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Report SE~019-010-2H
FOREWORD

This report provides preliminary engineering definition information

‘for a liquid pressure-fed reusable booster engine. Enclosed are: Volume I,
Program and Baseline Data; Volume II, Critical Trade Studies Summary and

Volume III, Methodology.

These data are presented in accordance with the Data Procurement Docu-
ment (DPD) No. 303, dated October 1971, which specifies the Data Requirement

(DR) No. SE-01 for Contract NAS 8-28217.
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A. INTRODUCTION

Currently NASA-MSFC is investigating the design and program character-
istiés of using a pressure-fed propulsion system for the first—stagé booster
of the future Space Shuttle Vehicle. Contract NAS 8-28217 was issued to
Aerojet Liquid Rocket Company (ALRC), on 24 November 1971, to investigate the
design and program requirements of a pressure-fed engine to support this

booster study.

As part of this study, ALRC is responsible for providing a Design Data
Book in accordance with the Data Requirement (DR) Number SE-01 which is speci-
fied in the Data Procurement Document (DPD) Number 303, déted October 1971.
Therefore, summary data for Program and System Baseline, Critical Trade
Studies, and Methodology used during this study are provided herein. This
report is issued at the completion of the contract in accordance with an

agreement with the NASA-MSFC Engine Program Office.
B. SUMMARY

1. Program and System Baseline

The pressure-fed engine baseline development program is 54 months
long. This includes the delivery of 28 engines to be used as follows:
7 ground test engines, 7 unmanned flight test engines, 7 first manned orbit-
ing flight engines, and 7 dummy engines for a dynamic test vehicle. Produc-
tion and delivery of 77 engines for 10 Space Shuttle booster vehicles would

be completed by 1981.  Total engine deliveries are, hence, 105 engines.

The engine system baseline features include: ' the use of oxygen
and RP-1 propellants; a head-end gimbal using the Saturn 1C gimbal actuator
which has an RP-1 hydraulic actuation source; articulating fuel and oxidizer

lines to accommodate engine movement; two fuel and two oxidizer right-angle
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B, 1, Program and System Baseline (cont.)

poppet valves which are identical in size and use RP-1 hydraulic actuation;
a hypergolic ignition system using 85% TEB plus 157 TEA; a modular injector
using 55 modules, each with a thrust of 21,820 1bf to provide a total thrust
of 1.2M 1b at a thrust chamber pressure of 250 psia, a nozzle area ratio of 5
and an engine mixture ratio of 2.4; and a two-pass RP-1 regenerative-cooled

combustion chamber and nozzle.

2. Critical Trade Studies Summary

The initial Phase A level of the study contract was primarily in-
volved with the selection of an engine concept based upon design analyses and
trade studies. These trade studies included the consideration of cost, state
of development, producibility, reliability and safety, and operational reuse-
ability. These considerations were evaluated on a relative basis for the
candidate design concepts in addition to the design considerations of size,
weight, and performance. The results of these trade studies were reported in
the Phase A effort Final Report, Volume II - Technical, dated 18 January 1972.
A general engine design concept was selected for further design definition in

the Phase B level of the study.

The Phase B level of the study has provided a design optimization
of the selected engine concept. Due to the strong influence of the vehicle
design characteristics on engine design, vehicle exchange ratios were requested
from each of the 5 vehicle contractors. Optimization of engine fhrust chamber
'pressure, chamber length, mixture ratio, nozzle area ratio, nozzle contour
length, chamber contraction ratio, injector thrust~per-element, chamber cooling
design, line and valve sizes, and design approaches were then accomplished
using the vehicle exchange ratios and engine influence data. Therefore, the
resulting selected pressure-fed booster engine design results from both the
- current NASA requirements and the vehicle data provided to ALRC during the

tradeoff analysis phase of this contract.
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B, Summary (cont.)

3. Methodology

The analytical methods used for the critical thermal, performance
and dynamic analyses studies are presented in Volume III of this report. The
dynamic analyses includes high frequency and low frequency engine combustion

stability as well as POGO.

C. TECHNICAL DISCUSSION

The following paragraphs discuss the specific data requested by the

DR SE-01 of the NASA DPD 303.

VOLUME I - PROGRAM AND SYSTEM BASELINE

1. Program

The baseline program considered the development, production, flight,
and refurbishment of a pressure-fed engine. The overall program is shown by
Figure 1. The total development program is 54 months from authority to proceed
(ATP) to completion of engine certification. During development 7 ground test
engines (PTA), 7 unmanned flight test engines, 7 first manned orbiting flight
(FMOF) engines, and 7 dynamic test vehicle dummy engines are delivered to NASA
(Figure 2). A total of 363 development firing tests would be conducted which
includes 50 PFC and FFC ceftification tests (Figure 3). Component tests would
not ~only develop eaéh major component but also establish manifold and line
hydrodynamic transient and steady state characteristics, compatibility with
the environmental requirements, life capabilities, etc. The hardware demand

for‘devélopment tests and deliveries is summarized in Figure 4.

A total of 77 production engines are delivered for 10 flight
vehicles. The hardware demand, acceptance test, and delivery date (on the
dock at ALRC) schedule are shown by Figure 5. Deliveries are in accordance
with the NASA-MSFC need dates (Figure 6). A possible vehicle use schedule
for the 445 flights from 1978 to 1988 is shown Figure 7. This schedule pro-
vides for a total of 40 flights per engine with the first engine deliveries
being phased out of the shuttle program to allow the use of the latest

improved hardware for the major missions.
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C, Volume I - Program and System Baseline (cont.)

2. System Baseline

The engine design baseline selected for the NASA Pressure-Fed
Space Shuttle Booster is shown by Figure 8. A simplified flow schematic of
the engine is illustrated by Figure 9 and the major components are summarized

in the layout drawings of Figure 10.

The design characteristics of the ALRC pressure-fed engine include:
2 LOX valves and 2 fuel valves all having a 13.5-in. inlet diameter to provide
a cost-effective valve development program. Equal valve sizes also results
in a lower AP on the fuel side which is a critical circuit because of the AP
required by the regenerative-cooled combustion chamber and nozzle design;
articulating propellant lines are used in conjunction with the head-end gimbal
thrust vector control system. The existing NASA-developed Saturn 1C gimbal
actuator which utilizes fuel (RP-1) as a hydraulic actuation source is used;
the injector is a modular design featuring 55 modules with a thrust per module
of 21,820 1b to provide a total engine thrust of 1.2M 1lb. This injector
approach permits development of a state-of-the-art low thrust module which is
then clustered in a common chamber to provide the total thrust required for
the booster engine design. This approach reduces not only problems associated
with combustion stability but also in hardware fabrication and performance
projections; the ignition system is hypergolic utilizing 85% TEB and 15% TEA.
This ignition system is operated by the fuel pressure provided to the engine
which discharges the hypergol into each injector module to insure ignition of
the nonhypergolic LOX/RP-1 propellants; the regenerative chamber, nozzle and
modules are cooled in series during engine operation. A two-pass regenera-
tive design is employed. Although this design approach requires a 40 1b
pressure drop for cooling the thrust chamber, it allows reusing the thrust
chamber for a cost-effective booster design. A cylindrical structure is pro-

vided between the injector and the nozzle to transmit thrust loads from the
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C, Volume I, 2, System Baseline (cont.)

nozzle to the injector during engine operation and support the nozzle during

splashdown prior to water retrieval.

A summary of the design parameters is présented for the pressure-
fed engine on Figure 11. The key desigﬁ features of the baseline engine design
are presented on Figure 12 (2 pages). The modular injector design-is illu-
strated by Figures 13 and 14. The injector design utilizes 55 modules. The
module design includes an injector with a thrust of 21,820 1b at a chamber
~pressure of 250 psia and a thrust of 1,090 1b per element. An illustration
of the module design is shown by Figure 15. The integration of the module
into the total injector assembly is shown on Figure 16. This design allows
oxidizer to be delivered to the injector without any common welds between the
oxidizer and the fuel which returns from the regenerative chamber and nozzle

coolant jacket and then regeneratively cools the module.

Theiregeneratively—éooled thrust chamber parameters are summarized
by Figure 17 which includes a contraction ratio of 1.8, a chamber length of
70-in. and an equivalent bell nozzle contour length of 867%. The therﬁal design
data for the 2—pass cooling jacket at both the rated chamber pressure of 250
psia and at a chamber pressure of 150 psia for a thrust modulation to 60% of
maximum thrust is summarized by Figure 18. The details of the tube design for
the regenerative combustion chamber are summarized by Figure 19. The candi-

date material for the tubes is Inconel 625,
» The gimbal characteristics of the proposed engine are summarized
by Figure 20. The gimbal angle is + 6° and the engine moment of inertia about

the gimbal point is 43,150 slug/ftz.

The engine pressure schedule, a performance and weight summary and

- a perforhance ioss analysis are shown on‘Figures 21, 22 and 23, respectively.
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C, Volume I, 2, System Baseline (cont.)

The ALRC performance analysis has been correlated to LOX/RP-1 Titan I experi-
ence and indicates that a sea-level specific impulse of 237.8 sec is possible
with the proposed engine design. This performance value is 95% of theoretical
and provides a 10.8 sec contingency over the NASA baseline nominal specific

- impulse value of 227.0 sec. Therefore, a potential performance growth is
possible if the vehicle is designed around the NASA baseline requirements.

It should be emphasized that the 95% of theory value is a predicted nominal
development goal. The ALRC guaranteed minimum sea-level specific impulse is
93% of theoretical which results in the following performance values for a

chamber pressure of 250 psia, area ratio of 5.0 and MR of 2.4.

Guaranteed Predicted

Minimum Nominal
IS, Sea-Level, sec 232.6 237.8
IS, Vacuum, sec 283.9 289.8
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C, Technical Discussion (cont.)

VOLUME II - CRITICAL TRADE STUDIES SUMMARY

During the Phase A/B pressure-fed engine study, trade studies were con-
ducted to optimize engine design parameters which reéul;ed in the engine design
which is discussed in Volume I of this report. Due to the strong influence
of vehicle design characteristics on engine design, vehicle exchange ratios
were requested from each of the five vehicle contractors. These exchange
ratios were used in conjunction with engine weight, performance, geometry and

pressure drop requirement data to establish the optimum engine design.

The vehicle exchange ratios received during the tradeoff study phase
of the contract are summarized by Figure 24. These vehicle exchange ratios
have been revised by the vehicle contractors since the tradeoff studies were
conducted and are shown by Figure 25. Comparative analysis have shown that
the decisions made using the original exchange ratios are valid and the modi-
fied values do not affect the trends discussed herein.  By comparing the
values shown on Figures 24 and 25, it should be noted that 3 out of 5 sets of
the current exéhange ratio data are very nearly the same as the original GDC
valués. Hence, the GDC analyses would approximate current trends and the
selected pressure-fed engine design best meets the NASA and vehicle

requirements.

The tradeoffs conducted for the major engine design parameters are

presented in the sections which follow.

1. Chamber Pressure Optimization
~ Evaluation of the changes in vehicle gross liftoff weight as a

function of chamber pressure were investigatéd using GDC and TBC exchange

ratio data (Figure 26). Data from other contractors was not available when
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C, Volume II, 1, Chamber Pressure Optimization (cont.)

this tradeoff was performed. This analysis trades off the effects of engine
performance, engine weight, tank weight and engine geometry effects upon the
vehicle boattail. These data indicate that chamber pressures higher than
250 psia reduce the vehicle gross liftoff weight. A chamber pressure of
approximately 275 psia is optimum but the reduction in GLOW compared to .the

250 psia design point is insignificant.

2. Mixture Ratio Optimization

The variation in specific impulse and bulk density with mixture
ratio were considered during the engine study. The selected mixture ratio of
2.4 provides the maximum specific impulse (Figure 27), however, increased bulk
density can be achieved by increasing the mixture ratio. Vehicle data received
during this study did not justify this mixture ratio increase which thus

resulted in an optimum mixture of 2.4 (Figure 28).

3. Chamber Length Optimization

Tradeoffs between chamber length, engine weight and engine geometry
effects upon the vehicle were conducted to establish an optimum combustion
chamber length. These studies also considered the effect of thrust per ele-
ment on system performance. The effects of chamber length on gross liftoff
weight for values typical of the current Chrysler and MDAC exchange ratios
are shown on Figure 29 and for values typical of the current GDC, MMC, and
TBC exchange ratios on Figure 30. A chamber length of 70-in. was selected
from this study. The data also shows that further reductions in GLOW can be
obtained By reducing the thrust/element of the injector to 500. However, thé
thrust/element was not reduced below 1000 to keep the number of elements to be
machined to a minimum and to provide larger diameter injector holes to facili-

tate cleaning.
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C, Volume II - Critical Trade Studies Summary (cont.).

4, Nozzle Optimization

_ ‘The nozzle design was evaluated for effects of separation at sea-
level with the candidate chamber pressures. A compafison of empirical separa-
tion data with model data is shown by Figure 31 and nozzle exit pressure varia-
tion with area ratio is shown by Figure 32. The possible requirements for the
engine to throttle to provide reduced thrust to maintain the maximum accelera-
tion of 3G's and a maximum dynamic pressure of 650 1lb per sq ft required that
area ratio for nozzle separation as a function of throttling be considered
(Figure 33). With the NASA requirements for 70% throttling capability this
analysis indicated that a 5:1 area ratio was the maximum that could be uti-

lized without separation occurring.

_ The effect of nozzle area ratio upon GLOW was investigated by
trading off the impact of performance, envelope and weight for various nozzle
designs (Figure 34). This figure shows that an area ratio of 6 is optimum
although the curve is relatively flat between area ratios of 5 and 6. This
data along with the separation criteria leads to the selection of an area

ratio equal to 5.

The nozzle contour length effect upon GLOW is shown on Figure 35
for the original TBC and GDC exchange ratios. Based upon this figure, an

86% length bell nozzle was selected.

The variations of specific impulse with nozzle area rétio and con-
tour length used in this study are shown on Figure 36 in conjunction with
variations in engine weight with contour length and nozzle area ratio as shown
on Figure 37. Geometry data effects as shown by the stage diameter varia-

tions with nozzle area ratio on Figure 38 were also included in the study.
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C, Volume II - Critical Trade Studies Summary (cont.)

5. Combustion Chamber Contraction Ratio Optimization

Tradeoffs were conducted to evaluate the effects of combustion
chamber contraction ratio (AInj/AT), on pressure drop from the injector face
to the plenum, injector and chamber weight, and tank weight. A theoretical
curve showing the impact of contraction ratio on this pressure drop is pre-
sented on Figure 39. The current NASA F-1 engine value is also compared to
the theoretical value. The effects of this combustion chamber contraction
ratio on engine inlet pressures was then investigated (Figure 40) and the
variation in engine weight (Figure 41) with contraction ratio was traded off
against the variation in vehicle tank weight. The resulting tradeoffs con-
ducted using TBC and GDC data indicated that the optimum contraction ratio
was about 1.8 for the selected pressure-fed engine design (Figure 42). The
figure shows that the variation in GLOW with contraction ratio is minor and
the contraction ratio selection is dictated by pressure drop limitations for

a 380 psia engine inlet pressure and physical design constraints.

6. Propellant Line Velocity Optimization

The effect of the engine line velocities upon the line and valve
pressure drops and attendant variations in required vehicle tank pressures
were traded-off against the line and valve wet weight variations. Figure 43
shows the variation of GLOW with propellant velocity for both the fuel and
oxidizer. This figure shows that a propellant velocity of approximately
22 ft/sec is optimum for each circuit which results in different valve and

line sizes.
Consideration of utilizing the same size oxidizer and fuel valves

to reduce fabrication and development costs was also evaluated. Figure 44

shows that this results in an optimum LOX velocity of 25 ft/sec which
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C, Volume II, 6, Propellant Line Velocity Optimization (cont.)

corresponds to a fuel velocity of 15 ft/sec. Although the common size cri-
teria results in an engine wet weight penalty of approximately 900 1b, the
minor increase in GLOW was considered acceptable to obtain commonaiity

benefits.
The corresponding pressure drops resulting from this tradeoff are
a line AP of 10 psi in the oxidizer circuit and 3 psi in the fuel circuit and

a valve AP of 6 psi in the oxidizer circuit and 3 psi in the fuel circuit.

7. Cooling Tradeoffs

The regenerative-cooled combustion chamber selected for the
pressure-fed engine design was evaluated for optimum cooling fabrication and
AP characteristics. The analysis indicated that a coolant pressure drop of
40 psi was obtainable with a chamber design utilizing 230 tubes. This results

in a bulk temperature rise of approximately 90°F (Figure 45).

8. Water Impact Considerations

As a result of the pressure—fed booster being water-recovered and
impécting in the ocean at approximately 150 ft/sec, an analysis was conducted
to investigate the effects of splashdown hydraulic loads on engine weight.
This analysis considered the structural characteristics of the engine required
to withstand impact loads for various boattail configurations. The effect of
the impact loads on the engine weight is shown on Figure 46. The "7 Engine
Bell Protection"” parameter on this figure refers to the axial lehgth of the

'ﬁozzle, measured from the throat, that is protected by the vehicle boattail.

The effect of the water impact loads upon the gimbal actuator
- were also considered. Figure 47 shows that the actuator can withstand an
impact velocity of 150 ft/sec without modification and porting the actuator

increases its impact capability to 200 ft/sec.

Page 11



Report SE-019-010-2H

C, Technical Discussion (cont.)

VOLUME III - METHODOLOGY

Analytical methods used in the pressure-fed engine study are summarized
in this volume for performance, thermal, and dynamic analysis. Existing ALRC

computer programs were utilized to provide design data in a timely and cost-

effective manner,
1. Performance
a. Delivered Performance

In order to meet the program objectives of a reliable high
performance engine design, the analytical models used to predict performance
are of primary importance. The performance evaluation techniques which are
proposed have been successfully applied to many ALRC engine programs, includ-
ing TRANSTAGE, APOLLO, and TITAN-GEMINI-624A. The model has been used as an
analysis tool to define areas of excessive performance loss and as a design
tool to correct the deficiency. These techniques, when applied to the pro-
posed engine design, will ensure a high degree of confidence in the predicted
performance values. Propellant combinations and injector design configurations

correlated with the performance model are shown on Figure 44.

The performance model is the methodology recommended by the
ICRPG Performance Standardization Working Group(l) modified to include perfor-
mance loss interactions based upon liquid propellant vaporization theory.(z)
Vaporization-limited combustion properties are used to calculate_those losses
resulting from incomplete energy release, finite-rate limited gas expansion,
and boundary layer shear drag and heat transfer. This modified program is

termed the "Vaporization Interaction Performance Model.

(1) Pieper, J. L., ICRPG Liquid Propellant Thrust Chamber Performance
Evaluation Manual, CPIA No. 178, September 1968

(2) Kors, D. L., and Bassham, L. B., and Walker, R. E., A Liquid Rocket
Performance Model Based on Vaporization Interactions, AIAA 5th
Propulsion Joint Specialist Conference, 9-13 June 1969
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C, Volume III, 1, Performance (cont.)

The technique used for evaluation and prediction of perfor-
mance considers the one-dimensional equilibrium (ODE) flow conditions to be
the base case. As seen in the following equation, all performance losses are

subtracted from this base:
Isp-(dellvered) = ISp (ODE) - Isp losses Eq. (1)

One-dimensional equilibrium performance is evaluated using
AGC computer program No. FD0068. This documented program computes one-
dimensional flow in chemical equilibrium and is the basis for all % Isp and
% c* quotations. :

The losses which are considered during performance analysis
of the engine are shown schematically on Figure 49 and are described below -
along with the basic relationships that incorporate the vaporized propellant
parameters into each performance loss definition. Each loss is defined
independently from the other performance losses to more clearly show Bow the
vaporized propellant parameters influence the loss analysis. The loss deriva-
tions are developed without reference to any particular evaluation program;
however, both the ICRPG Standard and Simplified Reference Computer Programs
can be utilized with the final derived performance loss formulations. A list
of abbreviations and symbols for the performance model is included as the last

page in this section.

For the PFE study the engine designs are based on a sea level-
thrust. Therefore, the sea level specific impulse is an output. The perfor-
mance computer model bases performance on the vacuum conditions and as a
final step conversion to sea level performance is made, as shown on Figure 50.
The computer model iterates on weight flow rate, engine geometry, and the
performance losses to obtain a sea level thrust consistent with the required
- value. The individual losses considered in the performance model are

described in the.following paragraphs. « - :
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C, Volume III, 1, Performance (cont.)
(1) The Energy Release Loss (ERL)

This loss accounts for the performance reduction as a
result of incomplete vaporization, mixing, and chemical reaction. ERL is
evaluated by determining the mass defect caused by unvaporized propellant and
the effect of the vaporized mixture ratio upon the thermochemical performance
output. Using one-dimensional equilibrium (ODE) conditions as the baseline or
maximum achievable performance, the energy release loss at any nozzle expan-
sion ratio is found by subtracting the product of the total percent mass of
propellant vaporization and the ODE specific impulse at the vaporized mixture
ratio from the ODE specific impulse at the liquid propellant mixture ratio.
That is, in ODE notation;

v

ERL = I, ook (0/F) ~ lsp ODE (0/F) | T

Eq. (2)

"stream tubes" of different

For an engine with several
mixture ratios or atomization/vaporization characteristics, this process is
used for each stream tube and the results are mass flow rate weight summed to
give the total loss. Therefore, Equation (2) can be generalized to the fol-
lowing notation:

B 1
ERL = ) |I f Eq. (3)
i

sp ODE (0/F); ™i ~ Tsp ODE (0/F)yq "vi| Tg

ERL is evaluated using Priem's vaporization model (3)

modified to account for ALRC test data correlations.
(2) The Mixture Ratio Maldistribution Loss (MRDL)

This loss accounts for the performance degradation

attributable to non-homogeneous combustion products on a macroscopic scale.

(3) Priem, R. J. and Heidmann, M. F., Propellant Vaporization as a Design
Criterion for Rocket Engine Combustion Chambers, NASA TR-R-67, 1960
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The loss can be intentionally induced, as with barrier cooling or may be
unintentional as a result of non-uniform injector hydraulics. The mixture
ratio maldistribution loss is calculated using a stream tube technique (4).
The mass flow rate weighted sum of the ODE specific impulse for the individual
stream tubes at the stream tube mixture ratios are subtracted from the ODE
specific impulse at the over-all mixture ratio to define this loss. Again,
using ODE as the reference condition, the MRDL is defined by the following
relationship: |

n m

ML= Top ome o/, T L Tep oo (o/m R Eq. (4)

where the "ith" stream tube refers to discrete zones of flow whose mixture
ratios are calculable by known injector hydraulic parameters. For the Phase
B PFE study this loss was estimated from data on a similar engine to be 1% of

the sea level specific impulse.
(3) Coolant Performance Loss Model (FCL)

_ The coolant performance loss model described herein
accounts for the performance penalty associated with the resultant nonuniform
propellant distribution and the thermal energy transport from the'highvtemper—
ature core to the low temperature boundary flow. The basic assumptions are

summarized as:

1. Film bulk temperature is obtained from ex1st1ng
heat transfer models.

2. Energy is assumed to be exchanged upstream of
throat.

3. Energy‘is extracted uniformly from core.

(4) Pieper, J. L,, Dean, L. E,, Valentine, R. S., "Mixture Ratio Distribution -
Its Impact on Rocket Thrust Chamber Performance, '"Journal of Spacecraft
and Rockets, Vol. 4, No. 6, June 1967
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C, Volume III, 1, Performance (cont.)

T8
4.  bhg =/ C_(dr))
TIN
5. (m Ah)core = (m Ahc)coolant
B (h - a2 4 h (h o+ an) /2
_ core c coolant
6. I = f v
SPdel B
where: Ah = enthalpy
Cp = specific heat at constant pressure
Tg = bulk film coolant temperature
Tiy = inlet film coolant temperature

Computationally, thé heat is removed from the core by reducing the propellant
heat of formation in the ODK or TDK computer program by an amount which
exactly compensates for the total enthalpy gained in the coolant stream tube
when it is heated from its inlet temperature to the final bulk coolant
temperature. Both stream tubes — the heated coolant and reduced enthalpy
core are then expanded to the nozzle exit conditions using ODK/TDK computer
program for the core and Thermocal for the film coolant. The coolant perfor-

mance decrement AI is then computed by using the following relationship:
Peoolant

m I
core coolant “sp, hc

Sp
AT -1 _ core O/F, h

SP.oolant SpO/F M
overall

The model assumes no species transport between the core
and coolant stream tubes, which may limit its general application. However,
extensive correlation of this model with experimental test data has indicated
its basic validity for the type of thrust chamber designs proposed for this

program, The other assumption requiring justification is the selection of the
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bulk temperature of the coolant flow after thermal transport from the core.
The thermal models discussed elsewhere are used to estimate the bulk coolant
temperature. The accuracy of this prediction is not critical since the sensi-

tivity of the coolant performance loss to the assumed amount of thermal trans-

port is quite low as shown in Figure 20,

In conclusion, it can be stated that the proposed coolant
model is simple in concept and computational procedure, and correlates
adequately the available film coolant performance data for design and operating

variable that are presentative of the proposed thrust chamber.
(4) The Kinetic Loss (KL)

. This loss accounts for performance reduction from the
equilibrium condition resulting from finite time dependent chemical recombina-
tion of the‘species present in the exhaust gas during the nozzle expansion
process. The kinetic loss is defined by considering the mass flow rate-summed
ODE performance at the stream tube mixture ratio as the reference point. The

(5)

one~-dimensional kinetic (ODK) performance evaluated at the vaporized mixture
ratio for each of the individual stream tubes, and then summed over the '"n"
stream tubes, is subtracted from the ODE performance to obtain the kinetic
loss. Again, it is emphasized that both the kinetic and ODE performance must
be evaluated at the vaporized mixture ratio and mass flow rate rather than at
the liquid propellant mixture ratio because the vaporized parameters represent

the actual composition of the exhaust gases.

Equation (5) is a mathematic representation of this

definition of kinetic loss.

(5) Frey, H. M., et al, ICRPG One-Dimensional Kinetic Reference Program,
Dynamic Science, July 1968.
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He

vi

KL = — Eq. (5)

He

n
Y |1 -1
i | =P ODE (o/F)vi sp ODK (o/F)Vi

For the design - configuration and operating levels surveyed for the booster

study this loss should be small, less than 0.2% of the ODE specific impulse.
(5) The Boundary Layer Loss (BLL)

This loss accounts for the degradation of performance
from the shear drag and heat loss at the boundary of the thrust chamber. The
boundary layer loss is evaluated using the vaporized performance combustion
properties in the outer stream tube. Again, the vaporized composition is con-

sidered rather than the composition based upon over-all propellant flow rates.

Using a suitable evaluation procedure(6), AFBLL is calculated and divided by

the total propellant flow rate to determine the boundary layer loss.

(AFBLL) (0/F)
BLL = - A4 Eq. (6)
My

(6) The Nozzle Divergence Loss (DL)

This loss accounts for the decrease in thrust attributable
to non-axially directed momentum at the nozzle exit and the non-planar sonic
surface. In most cases, this loss is not significantly affected by the vari-
ance of the vaporized mixture ratio from the over-all liquid flow mixture
ratio. Therefore, no vaporized mixture ratio notation is included in the

definition of the divergence loss. This performance loss, when evaluated by

(6) Weingold, H., D., The ICRPG Turbulent Boundary Layer Reference Program,
Pratt and Whitney Aircraft, July 1968,
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itself, usually can be expressed in terms of a divergence efficiency, Npry?

which modifies the delivered or actual thrust.

Isp 1-n_.
DL = '___QEl. - 1 = I _____EEX. Eq. @)
"prv SPdel SP de1| Tprv

- The analytically predicted specific impulse of a
vaporization-limited rocket engine can be evaluated by subtrécting the above

defined performance losses from the ODE theoretical condition.

s = IS - I IS losses
Pael PopE P

= T

SPODE (ERL + MRDL + KL + BLL + DL) Eq. (8)

Substituting Equations (2) through (7) for the five performance loss terms of
Equation (8) and cancelling like terms, the following final formulation is
obtained.

L i AFprL
s 2 Is i "prv h
Pdel i| *Pok(o/m . "1 By

1 Eq. (9)

A more detailed description of the performance model and

its component losses, along with a discussion of the application of the model

(7) (8)

to other engine programs, is available in the existing literature.

(7) Pieper, J. L., op. cit,

(8) Kors, Bassham, Walker, op. cit.
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LIST OF ABBREVIATIONS AND SYMBOLS FOR THE PERFORMANCE MODEL

BLL = Boundary layer loss, lbf-sec/lbm

DL = Divergence loss, lbf-sec/lbm

ERL = Energy release loss, lbf-sec/lbm

KL = Kinetic loss, lbf-sec/lbm

Isp = Vacuum specific impulse, lbf-sec/lbm
m = Mass flow rate, lbm/sec

MRDL = Mixture ratio maldistribution loss, 1bf-sec/lbm
0/F = Mixture ratio

AFBLL = Boundary layer thrust decrement, 1bf

€ = Area ratio

npiy = Nozzle curvature-divergence efficiency
n = Enthalpy

Subscripts

del = delivered value

i = of "ith" stream tube

n = number of stream tubes

0o/A = overall engine property

ODE = one dimensional equilibrium
ODK = one dimensional kinetic

T = total engine property

v = vaporized property

c = coolant property
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2. Engine Combustion Stability

Stability considerations for the pressureTfed engine system involve
the evaluation of high frequency combustion stability, feed system coupled
stability and the POGO coupling of the vehicle structural dynamics with the
combustion process. Each of these three stability modes have been addressed
in the preliminary design of the engine and in the evaluation of the vehicle

feed system and structural dynamics.

The unique engine design provides a degree of conservatism in the
suppression of high frequency combustion oscillations through the modular
injéctor approach. The high frequency combustion stability modes are amenable
to suppression using the modular design with absorbing cavities forward of the
energy generation zone providing suppression in addition to the damping pro-
vided by the module "pocket" walls and the detuning of module frequencies from

the injector pattern sensitive frequencies.

For the feed system coupled mode, two design features make solution
of such potential instabilities a practical engineering problem. The first
feature uses fhe basic flexibility of the injector manifold system whiéh feeds
the modules to allow tuning of the system to reject unwanted frequency response.
The second feature uses the injector inertance to produce a fluid dynamic filter
which attenuétes energy transmission between the injector and the feed system.
This blocking filter would be tuned at 50 Hz to be effective below the lowest
possible Chugging frequency and its effectiveness would increase with higher

frequencies.

The analyses performed to evaluate the POGO mode of oscillation
indicates that vehicle structure and engine oscillations do not ekactly coincide
at the same frequency. However, an analysis was performed which used repre-
sentative PFE vehicle data and a mathematical vehicle representation which was

artifically forced unstable and indicated that effective suppression of this
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induced instability may be achieved by terminating the oxidizer lines at the

engine inlets with accumulators equivalent to 6 ft3 of Helium.

The following sections identify the methodology used in these

analyses.
a. High Frequency
(1) Stability Evaluation

The Crocco sensitive time-lag model was used to evaluate
engine combustion stability., The procedure for evaluating engine combustion
stability involves three basic steps: (1) determining the injector response
curve, (2) determination of the chamber response based on the type of chamber,
and (3) determination of the acoustic modes of the chamber in the frequency

range where the injector shows a high response.
The injector response curve is defined by the relationship

L. =n (1 - cos i;o
injector o] fs

fS is the sensitive frequency
n is the injector response magnitude parameter

f is the frequency of interest

The assumed value for n is 0.60 based upon experimental

information.

The value of fs is dependent upon the type of injector
orifice element and the operating conditions. Empirical relationships for the

sensitive frequency is given by the data plotted in Figure 51 where

MC is the chamber mach number at the injector face

PC is the chamber pressure in psia

1 . o . . 1
T= 55 is the sensitive time lag in milliseconds
s
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The ALRC baseline configuration has PC = 250 psia,
chamber contraction ratio = 1.8, and mean orifice size dm = 0.21 in., As a
“result, M = 0.329 and t(M P )l/3
c cc
fs = 1210 Hz.

*1.8, which yields the sensitive frequency:

s

The injector response curve corresponding to fs = 1210 Hz

is shown in Figure 52.

The term N defines the minimum response required
chamber
to establish an acoustic instability within the chamber. For cylindrical
chambers the values of N range from 0.35 to 0.75 where the largest
chamber
values are associated with large mach numbers (i.e., MC > 0.3). Since
M = 0,329 for the ALRC baseline configuration, a value of N = 0,70
c chamber

was chosen for this study.

The combined injector and chamber response curves are
shown in Figure 52 where the upper shaded region indicates the frequency range

for a possible high frequency instability.

Chamber modal frequencies represent the various resonant
frequencies which can exist in a particular chamber in the transverse and

longitudinal directions.
For longitudinal modes, the characteristic length is

the distance from the injector face to the nozzle throat. For a cylindrical

chamber
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where subscripts c and n refer to the cylindrical and converging conical nozzle

portions, respectively.

The ALRC baseline configuration has

= (40 +-§—x 30) in.

=
|

eff

60 in,

]

The nth longitudinal modal frequency is determined from the relationship:

Hh
i}
Nols

where ¢ is the velocity of sound, f

For the transverse modes, the characteristic length is
the chamber diameter. The transverse modal frequencies are determined from

the relationship:

where ¢ is the velocity of sound, r is the radius, and svn is the argument of
a Bessel function. Separate Bessel functions are required for determining the
frequencies of combined radial and tangential modes., The frequencies for com-
bined longitudinal and transverse modes are the vectorial sum of the individual

modal frequencies,
A listing of the acoustic modal frequencies for the ALRC

baseline configuration is contained in Table I and is based upon the chamber

radius of 46 in., and a velocity of sound, c = 3600 fps'
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TABLE I

ACOUSTIC MODAL FREQUENCIES

Acoustic Modes- Modal Frequencies (Hz)
Longitudinal
1 360
2 720
3 1,080
4 1,440
Tangential
1 276
2 457
3 630
4 795
5 960
6 1,122
7 1,286
8 1,450
Radial
1 572
2 1,050
3 1,520
Combined
Tangential-Radial
1T-1R 799
1T-2R ' 1,276
1T-3R 1,752
2T-1R 1,003
2T-2R 1,490
2T-3R : 1,970
3T-1R : 1,200
3R-2R 1,700
3T-3R ' 2,180
Combined
Tangential-Longitudinal
1T-1L . 455
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The acoustic modes whose frequencies correspond to the
unstable zone frequencies are shown in Figure 52, Of prime significance are
the second radial and sixth tangential modes. Note that the longitudinal modes
have been ignored since they tend to be highly damped by the nozzle losses and

the distribution of combustion along the chamber axis.,

An additional consideration that is important are the
maximum dimensions for which the first tangential and first radial modes are
neutrally stable. Referring to the response curve of Figure 52, this corresponds
to determining the radial dimensions which yield a modal frequency of 1750 Hz

where:

T ont 5
For the first tangential mode, rip = 7.2 inches,
For the first radial modes, I~ 15 inches,

(2) Modular Chamber

To achieve stability using a modular chamber design
requires that the sensitive frequency, fs, be sufficiently lower than the
chamber acoustic modes, Calculations previously discussed at the end of the
Stability Evaluation section indicate that a modular chamber should have a

radial dimension no greater than 7.2 in. to prevent the occurrance of a first
tangential mode of instability.
b. Feed System Coupled (Low Frequency)

(1) General Stability Model

Feed system coupled combustion instability is character-

istically caused by the closed-loop dynamic interaction of the combustion
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process and propellant feed system as shown in Figure 53. The forward loop
and the feedback loop dynamics are associated with the combustion process and

the feed system dynamics, respectively,

The open loop transfer function G(w) of this system is

given by the equation:

Kf Ko
G(w) = Zc(w) fo(w) + Zfo(w)
Zc(w) = combustion process impedance
fo(w) = fuel feed.system impedance
Zfo(w) = oxidizer feed system impedancé
Kf = fuel mixture ratio weighting factor
. KO = oxidizer mixture ratio weighting factor
w = rédian frequency'

The combustion impedance is given by the expression

-jwt
e

* 1
Zc (w) = .Aig 1 +Jwt2
c* = characteristic exhaust velocity
At = throat area |
tl = injcction-combustion tranéport delay
t2 = chamber residence time
g = gravitational constant
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Ko and Kf are constant weighting factors which account

"for mixture ratio perturbations:

Ag P T(r+l) ac*

Ke = % — =1-— —
oW ¢ or

Ag 9P — de¥
K = — “:’9=1+(r:l) T
(o] Cc W C r

(o]
where

T = 1is the steady-state mixture ratio

= is the slope of the c* vs r curve

System stability can be evaluated analytically by use of
the foregoing math model. Specifically, the open loop gain and phase can be
computed as a function of frequency and plotted in the complex plane as shown
in Figure 54. Stability is then determined by the use of the Nyquist stability

criterion.

(2) Gain Stabilizing Criterion
When applying the Nyquist stability criterion, it is
noted that if the magnitude of the open loop transfer function, ]G(w)‘, is
less than unity at a frequency corresponding to a 180° phase shift, then the

system is said to be gain stabilized, Hence, a gain stabilizing criterion

may be expressed by:

IG(w)I <1
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This equation can be rewritten in terms of the system parameters where:

Z max Z max
c c

f Z min o] Z min
£ff fo .
This equation is based on the assumption that the minimum feed system
impedances occur simultaneously at the same frequency. This assumption is
quite conservative since the destabilizing minimum values of impendance occur
at the acoustic mode resonant frequencies of each feed system and these

resonant frequencies are seldom coincident.

The minimum value of the feed system impedances 1is

governed by the injector resistances, Rj’ as defined by the following

relations
2 8P,
|z..| min = R_, = ——L
ff ‘ £3 W
f
2 AP
o]
{Zflmin=R,=—°‘__——
o o] 0
o
253 = sgteady state injector pressure drop
Wf = steady state fuel weight flow
ﬁ; = steady state oxidizer weight flow

The maximum value of Zc is given by

% P
c c
|Zc|max=-g—g=—_—

t - Wt
Fc = steady state chamber pressure
ﬁ£ = total weight flow
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Combining equations yields the following form of the conservative stability

criterion:

- — P — P 5
* *

r(r+l) 3dc + (r+£) Jc 9.

+ 1
x —_ % —
c - 2Afj . c o7 ZAOj Ch

—

1 -

Zq =|
h

o
o

At the stability boundary corresponding to neutral
stability, the left hand side of the equation representing the conservative
stability criterion is equal to unity. This equation can then be rearranged

to yield:

P, K, Kr 8P,
SR 1+ 2> —=
— 2(r+1) K AP

PC f jo

Since c* and 3c*/3r do not vary significantly for the range of PC values under
consideration, the foregoing equation can be used to generate a normalized map

of the stability boundaries for feed system coupled stability.

Using the curves for characteristic velocity (c*) versus
mixture ratio (r) for LOX/RP-1, a set of stability boundaries based solely on
gain stabilization were obtained and are shown in Figure 55. The curves in
Figure 55 represent the minimum pressure drops for absolute gain stabilization
as a function of mixture ratio for LOX and RP-1 propellants. These curves can

be interpreted in the following ways.

(1) At a given mixture ratio (;) and a chosen ratio of
fuel injector pressure drop to chamber pressure (Zij/ﬁg), the family of curves

define the corresponding maximum ratio of fuel to oxidizer injector pressure

drops which will barely result in absolute gain stabilization. The shaded

region represents physically unrealizable conditions.
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It should be noted that the system ﬁill become more
ggin stable as the ratio, K?jf/ijo’ is reduced‘from its maximum value wﬁile
Aij/PC f?d r are held constant. This is the same as increasing APjO while
holding Aij constant.

(2) At a given mixture ratio (;) and a chosen ratio of
fuel injector pressure drop to oxidizer injector pressure drop (Zij/Z?jo),
the family of curves yields a corresponding minimum ratio of fuel injector
pressure drop to chamber pressure ijf/ig which will barely result in absolute

gain stabilization.

Note that the system becomes more stable as

Zij/Fé increased above the minimum stabilizing value while ngf/3§go and T

are held constant. This is the same as increasing EF}O while increasing AP,

Jf°

Use of the data in Figure 55 can be illustrated
by the following example:

The present ALRC baseline configuration is a
regenerative engine having 1.2 million pounds of thrust and a pressure drop
schedule as follows:

Fuel (RP-1) Oxidizer (LOX)
AP valve, psi 3 6
AP regenerative circuit, psi 40
AP injector, psi 52 ' 30
Assume: AP, _ = 95 psi AP, = 86 psi

jf jo
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chamber pressure, f;, is 250 psia

mixture ratio, r, is 2.4

now
—_— = 95 _
Aij/PC = 359 ° 0.38
—_— 95
Aij/APjO— 56 " 1.10

Plotting the point corresponding to Zﬁsf/ﬁé = (.38
and r = 2.4 on Figure 55 indicates that the maximum acceptable ratio,
Z§5f/Z§go’ for absolute Ei?n Efébility is equal to 0.625. As noted above, the
present ALRC design has Aij/APjO = 1,10 and is not absolutely gain stabilized.

c. Feed System Stability (POGO)
(1) Engine Transfer Functions

The analysis of the POGO stability characteristics for a
vehicle system requires a knowledge of the engine system transfer functions
which relate inlet pressure and flow to engine thrust., The equivalent circuit
representation of the pressure fed engine/feedline combination is shown in

Figure 56 where:

ZQo is the oxidizer feed system impedance upstream
of the engine inlet,

Zlf is the fuel feed system impedance upstream of
the engine inlet.

Zio is the oxidizer circuit impedance between
engine inlet and combustion chamber.
Zif is the fuel circuit impedance between engine

inlet and combustion chamber.

Z is the combustion impedance.
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The engine transfer functions which require evaluation are:

aPc/aPinlet

M/ n1et

3T/ 3P
c

(a) aPc/aPinlet
For the oxidizer side, the inlet pressure can be
designated as Pio as shown in Figure 56, Using Millman's network theorem, the

following transfer function is obtained:

BPC B 1
aPio zio Zio
1+ Z + Z,.+ 2
c if Lf

Zc was defined in the previous section on Feed System

Coupled Combustion Stability and can be represented by the equation

7 = c* e—tlS

c Atg 1+ tZS

The transport time delay, tl’ has negligible effect in the POGO frequency
range. The chamber residence time lag, t2’ also has a negligible effect for

the ALRC baseline configuration.’

(®) BW/apinlet

This transfer function is the input admittance for

the enginé. Referring to the oxidizer side
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P

Z + Z +

- c if z f
Z + (Z + Z +

Pio Zio c ( io c) (zif z

2

where pressure in psi and weight flow in 1b/sec.

(c) aT/BPC

The transfer function relating the perturbations in

engine thrust to perturbations in chamber pressure is given by

%%—- = 4800 (Sea Level)
c

3T

3PC = 6100 (Vacuum)

where thrust in pounds and pressure in psi.

Page 34



Report SE-019-010-2H
C, Volume III, Methodology.(cont.)

3. Thermal Analysis

a. Introduction
All passive thrust chamber cooling concepts, regardless of
whether supplemental cooling was used or not, were rejected during ?hase A
of this contract. The actively cooled concepts judged to be worthy of analyti-
cal study were full regenerative, ducted film, and a potentially promising
combination of the two. With the 1attef concept, the chamber is regeneratively
cooled with a low pressure drop, single forward pass design, and the nozzle

entrance is duct cooled.

As discussed Volume I of this report, a fully regeneratively
cooled thrust chamber without éupplemental fuel film cooling was selected for
the engine baseline. The basis for this selection was presented in "Phase A
Final Report for Feasibility Study of a Pressure-Fed Engine for a Water
Recoverable Space Shuttle Booster,' dated 18 Januéry 1972. This section is

therefore only concerned with the fully regeneratively cooled baseline design.

Both LOX/RP-1 and LOX/Propane engines were evaluated during
Phase A and the results of the thermal analysis are documented in. the Phase A
final report for this contract. This section is concerned only with the base-

line system propellant combination, LOX/RP-1.

Regenerative cooling studies were restricted to the use of
fuel (RP-1) because liquid oxygen cooling is inferior. The analyses con-
sidered coolant burnout characteristics, gas and coolant side hydrocarbon and

carbon deposition and the need for minimizing coolant pressure drop.
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b. Analytical Procedure

A parametric study of a regeneratively cooled chamber with
fuel film cooling was conducted. The parametric study was conducted utilizing
the regeneratively cooled chamber heat transfer computer program developed at
Aerojet (Reference 1) and used extensively in the successful design of the
Titan IT, NERVA, Titan IIIB, and Phoebus chambers to name a few. The combus-
tion gas properties were obtained from the Aerojet developed THERMOCAL com-
puter program (Reference 2) and used in conjunction with the following hot-
gas-side heat transfer correlation, a modified form the simplified Bartz

(Reference 3) correlation.

Nomenclature is shown on Table II.

~ The "Cg" is a coefficient which is normally 0.026 but was
varied to account for gas—side carbon deposition and "K''" is the correction

(1)

factor for two-dimensional flow in the nozzle expansion region.

The forced-convection correlation for RP-1 was based upon

References 4 and 5.

0.95

DV p '
h. = 0.0048 % b py, 04
D ub

L

(1) The assumed carbon deposition was conservative (0.7 h,) and test data
(Reference 6) indicated greater reductions are possib%e (0.3 hg to
0.5 hy).
g
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TABLE I

THERMAL ANALYSIS NOMENCLATURE

A flow area

Cg multiplier for "hg" '

CP heat capacity

D diameter

Hg gas-side heat transfer coefficient
hy coolant-side heat transfer coefficient
k thermal conductivity

K' 2-D nozzle flow correction factor
Pr Prandtl number

Qo burnout heat flux

T temperature

\ velocity

WT total propellant flow

o density

n viscosity

SUBSCRIPT

b bulk

£ film

Sat

saturation

free stream

Page 37



Report SE-019-010-2H
C, Volume III, 3, Thermal Analysis (cont.)

The burnout heat flux correlation for RP-1 was derived from

Reference 4 and is shown below and on Figure 57.

Qgq = 0.9 + 0.000362VAT_

where, ATsub = (Tsat - Tb)

Soot characteristics on the hot gas side of the thrust cham-
ber tubes were thoroughly investigated to define the most realistic reduction
in heat transfer due to the soot. The most pertinent data on soot character-
istics is shown in Figure 58 for; (1) the soot layer resistance and (2) 1local
soot flake off phenomena. The soot or carbon layer resistance for the chamber
and throat is shown to be approximately 5500 and 4000 in.z—sec—°F/Btu,
respectively. Figure 58 also indicates that the soot layer apparently builds
up and flakes off continuously during a firing. These soot characteristics

were incorporated into the Phase B thermal analysis.

Thermal radiation from the LOZ/RP—l combustion gases was
also incorporated in the Phase B heat transfer analysis. The quantity of
heat transferred by radiation was varied with thrust chamber location and
the condition of the tube wall, i.e., clean or sooted. The heat fluxes from
convection and radiation for the chamber and throat are shown in Figure 59
for clean wall, soot, and soot flaked off conditions. Heat flux due to radi-
ation in the chamber for a clean wall is 1.4 Btu/in.z—sec-°F out of a total
of 3.7 Btu/in.z—sec—°F. With a sooted wall the radiation is 0.1 Btu/in.z—

: .2
sec—°F out of a total of 0.8 Btu/in. -sec-°F.
For the parametric analysis, round cross section, constant

diameter wall thickness tubes were assumed throughout. A two pass chamber

was also used to conduct the parametric studies and the total number of
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tubes was varied from 150 to 300 with tube wall thicknesses of 0.05, 0.03,
and 0.02 inches. The analysis was conducted initially assuming no carbon
deposit and then with carbon deposition in the hot-gas side of the tubes.

The results of the LOX/RP-1 regenerativé coolant stuay is shown on Figures 45

and 18.

Total chamber coolant preésure drop and coolant bulk.tem—
perature rise is shown versus number of tubes (Figure 45) for 0.050, 0.030
and 0.020 in. tube wall thicknesses. For any wall thickness pressure drop
(AP) increases for increasing number of tubes. The noted AP increases are

due to the decreasing flow areas as the number of circular tubes is increased.

The study indicates that tube burnout is not a design problem
with RP-1 coolant. Burnout is not the only limiting factor on the coolant-
side; a slow buildup of varnish or tar accumulates over the total period of
run time. A literature search was conducted, and this buildup rate was inter-
preted (Reference 7) in terms of wall temperature rise per flight (160 sec)

and shown in Figure 45.

Studies involving the relative merits of single pass, pass
and a half, and two pass designs were also conducted. Factors common to the
three designs are that (1) coolant is available at the forward end of the
engine, (2) coolant must be fed the entire engine length and back, a 180°
turn necessarily being made by the coolant at the nozzle exit, and (3) the
coolant bulk temperature rise through the chamber wall is so low that cooling
considerations need not enter into flow scheme deterﬁination. Table III sum-
marizes the advantages and disadvantages for the three concepts. The selected
flow scheme is the double pass design, because the tube bifuration technique
is well developed, and the hot gas sealing problem of the pass and a half
design is recognized to be quite difficult. As noted from.the table, there
is little difference in the required coolant jacket AP for the thfee cooling

méthods.
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TABLE IIIL

REGENERATIVE COOLANT FLOW SCHEMES - ADVANTAGES AND DISADVANTAGES

Coolant
Flow Scheme

Single Pass
(AP = 39 psi)

Pass and a Half
(AP = 38 psi)

Two Pass
(AP; = 40 psi)

Advantages

None of Significance

No bifurcations, excessive tube
taper, or tapered walls needed

Small nozzle outside exit
diameter

small coolant inlet manifold
weight

Small gimbal moment

Small nozzle exit outside
diameter

Small gimbal moment

Shortest inlet line length
and volume

Small coolant inlet mani-
fold weight
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Disadvantages

Largest nozzle exit out-
side diameter

Heaviest coolant inlet
manifold

Longest inlet line
Largest gimballing moment

Large tube taper,
bifurcation, or tapered
tube walls required

Difficult hot gas seal-
ing problem at coolant
inlet joint

Large tube taper,
bifurcation, or tapered
tube walls required
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